ponedjeljak, 16. srpnja 2012.

NASA's Car-sized Rover Nears Daring Landing on Mars

NASA's Car-sized Rover Nears Daring Landing on Mars







 
 
MOFFETT FIELD, Calif. -- NASA's most advanced planetary rover is on a precise course for an early August landing beside a Martian mountain to begin two years of unprecedented scientific detective work. However, getting the Curiosity rover to the surface of Mars will not be easy.  "The Curiosity landing is the hardest NASA mission ever attempted in the history of robotic planetary exploration," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate, at NASA Headquarters in Washington. "While the challenge is great, the team's skill and determination give me high confidence in a successful landing." The MSL mission is a precursor mission for future human mission to Mars. President Obama has set a challenge to reach the Red Planet in the 2030s.  To achieve the precision needed for landing safely inside Gale Crater, the spacecraft will fly like a wing in the upper atmosphere instead of dropping like a rock. To land the 1-ton rover, an air-bag method used on previous Mars rovers will not work. Mission engineers at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., designed a "sky crane" method for the final several seconds of the flight. A backpack with retro-rockets controlling descent speed will lower the rover on three nylon cords just before touchdown.  During a critical period lasting only about seven minutes, the Mars Science Laboratory (MSL) spacecraft carrying Curiosity must decelerate from about 13,200 mph (about 5,900 meters per second) to allow the rover to land on the surface at about 1.7 mph (three-fourths of a meter per second). Curiosity is scheduled to land at approximately 1:31 a.m. EDT Aug. 6 (10:31 p.m. PDT Aug. 5).  "Those seven minutes are the most challenging part of this entire mission," said Pete Theisinger, JPL's MSL project manager. "For the landing to succeed, hundreds of events will need to go right, many with split-second timing and all controlled autonomously by the spacecraft. We've done all we can think of to succeed. We expect to get Curiosity safely onto the ground, but there is no guarantee. The risks are real." During the initial weeks after the actual landing, JPL mission controllers will put the rover through a series of checkouts and activities to characterize its performance on Mars while gradually ramping up scientific investigations. Curiosity then will begin investigating whether an area with a wet history inside Mars' Gale Crater ever has offered an environment favorable for microbial life. "Earlier missions have found that ancient Mars had wet environments," said Michael Meyer, lead scientist for NASA's Mars Program at NASA Headquarters. "Curiosity takes us the next logical step in understanding the potential for life on Mars."  Curiosity will use tools on a robotic arm to deliver samples from Martian rocks and soils into laboratory instruments inside the rover that can reveal chemical and mineral composition. A laser instrument will use its beam to induce a spark on a target and read the spark's spectrum of light to identify chemical elements in the target.  Other instruments on the car-sized rover will examine the surrounding environment from a distance or by direct touch with the arm. The rover will check for the basic chemical ingredients for life and for evidence about energy available for life. It also will assess factors that could be hazardous for life, such as the radiation environment. "For its ambitious goals, this mission needs a great landing site and a big payload," said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters. "During the descent through the atmosphere, the mission will rely on bold techniques enabling use of a smaller target area and a heavier robot on the ground than were possible for any previous Mars mission. Those techniques also advance us toward human-crew Mars missions, which will need even more precise targeting and heavier landers." The chosen landing site is beside a mountain informally called Mount Sharp. The mission's prime destination lies on the slope of the mountain. Driving there from the landing site may take many months.  "Be patient about the drive. It will be well worth the wait and we are apt to find some targets of interest on the way," said John Grotzinger, MSL project scientist at the California Institute of Technology in Pasadena. "When we get to the lower layers in Mount Sharp, we'll read them like chapters in a book about changing environmental conditions when Mars was wetter than it is today." In collaboration with Microsoft Corp., a new outreach game was unveiled Monday to give the public a sense of the challenge and adventure of landing in a precise location on the surface. Called "Mars Rover Landing," the game is an immersive experience for the Xbox 360 home entertainment console that allows users to take control of their own spacecraft and face the extreme challenges of landing a rover on Mars. "Technology is making it possible for the public to participate in exploration as it never has before," said Michelle Viotti, JPL's Mars public engagement manager. "Because Mars exploration is fundamentally a shared human endeavor, we want everyone around the globe to have the most immersive experience possible." NASA has several other forthcoming experiences geared for inspiration and learning in science, technology, engineering and mathematics. Information about many ways to watch and participate in the Curiosity's landing and the mission on the surface of Mars is available at: 






Mars Today

Mars Today, created by Howard Houben of the Mars Global Circulation Model Group, is a poster produced daily by the Center for Mars Exploration at NASA's Ames Research Center. The updated poster depicts current conditions on Mars and its relationship to Earth in six panels. 

upper left panelThe upper left panel diagrams the current positions of Mars and Earth in their orbits around the Sun. Note that Mars has a highly elliptical orbit compared to the Earth. For much of the time, Mars is too close to the Sun (as viewed from Earth) to be observed by Earth-based telescopes. For a QuickTime animation [1.1 MB] of the orbits of Earth and Mars and their relative positions through 2000 and 2001 click here. The panel also shows the interplanetary trajectory of Mars Global Surveyor. That spacecraft entered Mars orbit in 1997. Much information on the Martian surface and atmosphere was being gathered by the Global Surveyor which began the mapping phase of its mission in spring 1999. 
upper middle panelThe upper middle panel shows two views of the positions of Mars and Earth from vantage points near the ecliptic (the plane of the Earth's orbit). This allows visualization of the tilts of the rotation axes of the planets that are responsible for the seasons. Two views are necessary because Mars and Earth are tilted in nearly orthogonal directions. At this time, late spring in the Earth's northern hemisphere, the north pole is pointed towards the sun. It is also late spring in the northern hemisphere of Mars and that planet's north pole is pointed towards the sun at a similar angle. The changes in seasons on the Earth and Mars can be visualized in a 1.2 MB QuickTime animation of this panel through 2000 and 2001. 
upper right panelThe panel on the upper right compares the apparent size of the Martian disc as viewed from Earth with the size of Earth's disc as viewed from Mars. (Since the diameter of Mars is about half that of the Earth, Mars appears to be about half the size of the Earth when viewed from the same distance.) Both of these discs are compared to a circle 25 seconds of arc in diameter. This circle represents the largest possible apparent size of Mars as viewed from Earth (which is achieved only on those very rare occasions when the planets are both favorably positioned at the nearest points in their orbits). Even at these times, Mars -- a very difficult telescopic object to observe in detail -- is only about half the apparent size of the much more distant, but much larger planet Jupiter. For a QuickTime animation [1.5 MB] of this view of Mars through the years 2000 and 2001 click here. 
lower left panelThe lower left hand panel displays a simulated image of Mars as it would appear at the present time to a very high resolution Earth-based telescope. At this time, (late northern spring), an extensive carbon dioxide frost cap is growing in the southern hemisphere. Sharp brightness contrasts have allowed telescopic observers to follow Martian surface features for many years. Unlike the Earth, the Martian atmosphere is usually free of obscuring clouds. One exception is the cold region surrounding the winter pole that may be covered by a polar hood of water or even carbon dioxide clouds. Another exception occurs during periods of widespread dust storm activity, usually in southern spring and summer. 
lower middle panelThe lower middle panel shows a model prediction of the meteorology at the present time (from the Ames Mars Climate Model). Daily average temperatures in the lower atmosphere are color coded, while predicted wind speeds and directions are indicated by the arrows. In the equatorial regions near the surface, the atmospheric flow is dominated by the Hadley circulation that transports air from the cold winter hemisphere southwards across the equator. Because the equator rotates at a faster speed than other parts of the planet, this leads to a tradewind-like pattern of easterlies in the winter hemisphere and westerlies in the summer hemisphere. Strong westerlies are also apparent in the region of the polar night while light easterlies are prevalent in the vicinity of the summer pole. For a QuickTime animation [2.6 MB] of the predicted Mars meteorology over a one-year period click here. 
lower right panelThe lower right panel shows model predictions of the atmospheric water vapor column on Mars. At the present season -- late northern spring -- there is a nearly uniform distribution of water vapor over the low latitude regions of Mars best observed from Earth. The atmospheric inventory of water should continue to increase for several months as water sublimes off the permanent northern polar ice cap. For more information on Martian water, see the Mars water page. For a 2.5 MB QuickTime animation of the Martian water column predictions for 2000 and 2001 click here. 
The statistics printed below the image indicate the apparent diameter of Mars (in seconds of arc); the angle between the Sun and the Earth as viewed from Mars (in degrees); an angular measure of the season in the Martian northern hemisphere (Ls= 0 at the vernal equinox, 90 at the summer solstice, 180 at the autumnal equinox, and 270 at the winter solstice); the sub-solar latitude in degrees (another indicator of the season); the longitude of the sub-Earth point in the image; and the latitude of the sub-Earth point.
Click here to display the full GIF or JPEG image. Both images are about 170 kB in size.
You can also display the classical 4-panel Mars Today poster (about 120 kB).
thumbnail of 4-panel MarsToday links to gif image D
View a 600 kB Mpeg or a 3.3 QuickTime animation of the full MarsToday poster through 2000 and 2001.


Other Mars Images



Back to the CMEX home page
http://www.nasa.gov/topics/universe/features/exoplanet-atmosphere.html 

Curator: Howard Houben
Responsible NASA Official: Jeffery Hollingsworth
NASA Privacy Policy and Important Notices












Nema komentara:

Objavi komentar